Schrödinger Approach and Density Gradient Model for Quantum Effects Modeling
نویسندگان
چکیده
We describe here two approaches to model the quantum effects that can no more be neglected in actual and future devices. These models are the Schrödinger-Poisson and Density-Gradient methods fully integrated in the device simulator ATLAS. Simulations based on such methods are compared to each other on electron concentration and C-V curves in a MOS-capacitor.
منابع مشابه
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the driftdiffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کاملروابط کوانتومی ورودی- خروجی برای متامواد مغناطودیالکتریک چند لایهای جاذب و ناهمسانگرد
In this paper, we quantize electromagnetic field in, lossy, dispersive and anisotropic magnetodielectric media by using phenomenological approach. We obtain quantum input– output relations for anisotropic multilayer metamaterials. As an application of our approach, we investigate the dissipative and anisotropic effects of an anisotropic magnetodielectric slab on the quantum properties of incide...
متن کاملRisks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...
متن کاملInvestigation of nanoparticles diameter on free convection of Aluminum Oxide-Water nanofluid by single phase and two phase models
In this research, effect of nanoparticles dimeter on free convection of aluminum oxide-water was investigated in a cavity by single phase and two phase models. The range of Rayleigh number is considered 105-107 in volume fractions of 0.01 to 0.03 for nanoparticles with various diameters (25, 33, 50 and 100 nm). Given that the two phase nature of nanofluids, necessity of modeling by this method ...
متن کامل